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Abstract --- This paper presents a new frequency-domain
TLM symmetrical condensed node derived directly from
Maxwell’s equations by using centered differencing and
averaging. Direct correspondence between the FDTLM
and finite difference method is established. The node scat-
tering matrices and field expressions are given for the
general case with graded mesh and anisotropic materials
including both electric and magnetic losses. It is demon-
strated that this new FDTLM node always has 2nd-order
accuracy regardless of a uniform or graded mesh discreti-
zation of the space.

1. Introduction
The frequency-domain TLM (FDTLM) method is a
new numerical technique for solving 3-D electromagnetic
field problems. Since its concept was first introduced by
Jin and Vahldieck in 1992[1]~[3], the FDTLM method
has been successfully applied to analyze a variety of 3-D
electromagnetic structures[1]~[7]. The basic idea of the
FDTLM is to model the original electromagnetic structure
with an equivalent electric network by filling the space to
be analyzed with a transmission line matrix, or node array.
Electric and magnetic fields in the original electromag-
netic problem are represented by voltages and currents in
the network which are then treated with numerous stan-
dard network techniques. Using different nodes for differ-
ent media, the FDTLM method can be applied to virtually

any structure with complex geometry.

The nodes used in the FDTLM method were origi-
nally derived from the time-domain TLM (TDTLM)
nodes [1]~[5]. However, it has also been shown that the
FDTLM nodes can be derived directly in the frequency
domain by establishing a relationship between the imped-
ances and propagation constants of the main lines of the
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node and the properties of the medium to be modelled
[6][7]. In this paper, we will demonstrate that the FDTLM
node can be derived directly from Maxwell’s equations
without resorting to any circuit concept. A new symmet-
ric FDTLM node is derived from Maxwell’s equations
using centered differencing and averaging. The scattering
matrix of this new node is given for the general case with
a graded mesh and anisotropic materials including both
electric and magnetic losses. The accuracy of the TLM
algorithm is also discussed.

2. Theory
In the rectangular coordinate system, Maxwell’s
equations in the frequency-domain can be written as:
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where @ is the frequency; € and U are the permittivity and
permeability; oe and om are the equivalent electric and
magnetic conductivitics, respectively.

The grid points in the discretized space are denoted
by indices (i,j.k), respectively, in the x, y, z directions
(Fig.1). Any function of space at space point (i,j,k) is
expressed as F (i, j, k) . The cell sizes are denoted by u, v,

w, respectively, along the x, y, z directions.
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Equ.(1) can be simplified by using the following
transformation:

z=w-Z

e, = Ez/w ¥))

x=u-X; y=v-Y;
e = E/u;

h, = Hx/uZO; hy =Hy/vZo; h,=H /wZ,

e,= Ey/v;

where Z; is the characteristic impedance of free space.

Equ.(1) is then rewritten as:
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with ky denoting the wave propagation constant in free

space.

A set of finite difference equations can be obtained
from equ.(3) by using centered-differencing at point
{i,j,%). For example, for (3a), we have:
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The finite difference equations

®

corresponding  to
(3b)~(3g), respectively, can be similarly constructed.

Then we replace the grid cell (Fig.1) with its equiva-
lent transmission line network node with 12 branches
(Fig.2), and transform the normalized ficld variables at
the cell boundaries into the incident and reflected waves
at the ports of the transmission lines. For example, for
port one we have:

Ex(i,j—%,k):FHz(i,j—%,k) = 2.V (6)
where the upper and low signs, respectively, correspond

to the incident waves V' and reflected waves V' on the

right hand side of the equations. Equ.(6) establishes a
direct correspondence between the mathematical model
of the finite difference method and the physical model of
the frequency-domain TLM method.

By substituting (6) into (5), it is readily shown that
equ. (5) can be reduced to:
Vit Vi+Vo+ Vo +G, - E (i, 1, K)
Vi Vi ViV = 0

The next step in the derivation is to express the field
variables at the center (i,jk) in terms of the incident volt-
ages. This is accomplished by averaging the mixed elec-
tric and magnetic field components at point (i,j,k) along
appropriate coordinate axes. The procedure is as follows.
There are a total of twelve different mixed electric and
magnetic field components, namely, Ex-Hz, Ex+Hz,
Ex-Hy, Ex+Hy, Ey-Hx, Ey+Hx, Ey-Hz, Ey+Hz, Ez-Hx,
Ez+Hx, Ez-Hy, and Ez+Hy. For each of them, we pick up
its associated coordinate, which is the coordinate orthog-
onal to both the electric and magnetic field in the mixed
field component. The mixed field component is then aver-
aged at point (i,j,k) with respect to its associated coordi-

nate. For example, for (Ey+Hz), its associated coordinate
is x (x-axis is orthogonal to both Ey and Hz). The cen-

M

tered average at point (i,j.k) for (Ey+Hz) with respect to x
is then calculated, and the resulting equation is as fol-
lows:

Vi +Va— (E,(Lj, k) +H, (54, K) = 0 @)
In a similar way, the equations for the other mixed field
components can be obtained. By combining equs.(7) and
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(8), one can easily find the expressions of the field compo-
nents at the point (i,j,k) in terms of the incident voltages:
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Vi+Vi VAV

i - 2 i ) ©d)
. 2(V;‘V2‘V;+V;0)

HyGih = St %)

Hz(i,j,k) - 2( V‘1+V;_V‘11+V‘12) (9f)

Equ.(9) is derived directly from Maxwell’s equations
using centered differencing and averaging. The scattering
matrix is then obtained by simply substituting equ.(9) into
equ.(8). The 12X12 scattering matrix is shown in Fig.3.
The matrix elements are given as follows:

- _ Gea + GmB
2(4+Gea) 2(4+Gml5)
2
b= 4+G,, 10)
c=— Gea _ GmB
2(4+Geu) 2(4+Gm[3)
2
d= —-Tmﬁ

where subscripts & and B depend on where the element is
located in the matrix, as illustrated in Fig.3. For example,
for $29, which is given by ¢, subscripts for Ge and Gm are
then x and y, respectively. So we have:

G G

ex my

T2(4+G,) 2(4+G,)

829=c=

5. Discussions and Conclusions
Historically, the TLM method, which is based on Huy-
gen’s principle, and the finite difference method, which is
based on Maxwell’s equations, are distinguished as two
different methods, assuming Huygen’s principle and Max-

well’s equations represent two distinct modelling philos-
ophies. However, this assumption is not justified since
both Huygen’s principle and Maxwell’s equations
describe the same phenomenon in nature despite the use
of different ‘languages’. Indeed, they are fully equiva-
lent. We have demonstrated [8] that the time-domain
TLM (TDTLM) method is a unique time-domain finite
difference scheme and can be directly derived from Max-
well’s equation using centered differencing and averag-
ing. In this paper, we demonstrated that we can draw the
same conclusion for the frequency-domain TLM
(FDTLM) method. Therefore, the TLM method, both in
time- and frequency-domain, can be considered as either
a physical model of the transmission line network (Huy-
gen’s principle) or a mathematical model of the finite dif-
ference method (Maxwell’s equations), depending on
which concept one feels more comfortable with.

Based on the derivation presented in this paper, one
can easily assess the accuracy of the FDTLM method.
The errors introduced during the derivation of the field
expressions (11) and the node scattering matrix (Fig.3)
are only associated with the centered differencing
(Equs.(7)) and averaging (Equs.(8)). Both of them have
2nd-order accuracy. It should be mentioned that the
2nd-order accuracy of the FDTLM method is still pre-
served in the case of a graded mesh. This is because the
errors introduced during the derivation are solely
depended on the properties of the node and errors for dif-
ferent nodes are independent of one another. The error
for one node does not change when its surrounding envi-
ronment is changed,
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Fig.1 A unit cell and field sampling points
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Fig.2 The equivalent FDTLM symmetrical

Fig.3 The symmetrical scattering matrix of the
FDTLM symmetrical condensed node




