

A New Frequency-Domain TLM Symmetrical Condensed Node Derived Directly from Maxwell's Equations

Hang Jin and Ruediger Vahldieck

Laboratory for Lightwave Electronics, Microwaves and Communications (LLiMiC)

Department of Electrical and Computer Engineering

University of Victoria, Victoria, B.C., V8W 3P6, CANADA

Abstract --- This paper presents a new frequency-domain TLM symmetrical condensed node derived directly from Maxwell's equations by using centered differencing and averaging. Direct correspondence between the FD TLM and finite difference method is established. The node scattering matrices and field expressions are given for the general case with graded mesh and anisotropic materials including both electric and magnetic losses. It is demonstrated that this new FD TLM node always has 2nd-order accuracy regardless of a uniform or graded mesh discretization of the space.

1. Introduction

The frequency-domain TLM (FD TLM) method is a new numerical technique for solving 3-D electromagnetic field problems. Since its concept was first introduced by Jin and Vahldieck in 1992[1]~[3], the FD TLM method has been successfully applied to analyze a variety of 3-D electromagnetic structures[1]~[7]. The basic idea of the FD TLM is to model the original electromagnetic structure with an equivalent electric network by filling the space to be analyzed with a transmission line matrix, or node array. Electric and magnetic fields in the original electromagnetic problem are represented by voltages and currents in the network which are then treated with numerous standard network techniques. Using different nodes for different media, the FD TLM method can be applied to virtually any structure with complex geometry.

The nodes used in the FD TLM method were originally derived from the time-domain TLM (TD TLM) nodes [1]~[5]. However, it has also been shown that the FD TLM nodes can be derived directly in the frequency domain by establishing a relationship between the impedances and propagation constants of the main lines of the

node and the properties of the medium to be modelled [6][7]. In this paper, we will demonstrate that the FD TLM node can be derived directly from Maxwell's equations without resorting to any circuit concept. A new symmetric FD TLM node is derived from Maxwell's equations using centered differencing and averaging. The scattering matrix of this new node is given for the general case with a graded mesh and anisotropic materials including both electric and magnetic losses. The accuracy of the TLM algorithm is also discussed.

2. Theory

In the rectangular coordinate system, Maxwell's equations in the frequency-domain can be written as:

$$j\omega\epsilon_0\epsilon_x \cdot e_x = \frac{\partial h_z}{\partial y} - \frac{\partial h_y}{\partial z} - \sigma_{ex}e_x \quad (1a)$$

$$j\omega\epsilon_0\epsilon_y \cdot e_y = \frac{\partial h_x}{\partial z} - \frac{\partial h_z}{\partial x} - \sigma_{ey}e_y \quad (1b)$$

$$j\omega\epsilon_0\epsilon_z \cdot e_z = \frac{\partial h_y}{\partial x} - \frac{\partial h_x}{\partial y} - \sigma_{ez}e_z \quad (1c)$$

$$j\omega\mu_0\mu_x \cdot h_x = \frac{\partial e_y}{\partial z} - \frac{\partial e_z}{\partial y} - \sigma_{mx}h_x \quad (1d)$$

$$j\omega\mu_0\mu_y \cdot h_y = \frac{\partial e_z}{\partial x} - \frac{\partial e_x}{\partial z} - \sigma_{my}h_y \quad (1e)$$

$$j\omega\mu_0\mu_z \cdot h_z = \frac{\partial e_x}{\partial y} - \frac{\partial e_y}{\partial x} - \sigma_{mz}h_z \quad (1f)$$

where ω is the frequency; ϵ and μ are the permittivity and permeability; σ_e and σ_m are the equivalent electric and magnetic conductivities, respectively.

The grid points in the discretized space are denoted by indices (i,j,k) , respectively, in the x , y , z directions (Fig.1). Any function of space at space point (i,j,k) is expressed as $F(i, j, k)$. The cell sizes are denoted by u , v , w , respectively, along the x , y , z directions.

WE
2B

Equ.(1) can be simplified by using the following transformation:

$$\begin{aligned} x &= u \cdot X; & y &= v \cdot Y; & z &= w \cdot Z \\ e_x &= E_x/u; & e_y &= E_y/v; & e_z &= E_z/w \\ h_x &= H_x/uZ_0; & h_y &= H_y/vZ_0; & h_z &= H_z/wZ_0 \end{aligned} \quad (2)$$

where Z_0 is the characteristic impedance of free space.

Equ.(1) is then rewritten as:

$$0 = \frac{\partial H_z}{\partial Y} - \frac{\partial H_y}{\partial Z} - G_{ex} \cdot E_x \quad (3a)$$

$$0 = \frac{\partial H_x}{\partial Z} - \frac{\partial H_z}{\partial X} - G_{ey} \cdot E_y \quad (3b)$$

$$0 = \frac{\partial H_y}{\partial X} - \frac{\partial H_x}{\partial Y} - G_{ez} \cdot E_z \quad (3c)$$

$$0 = \frac{\partial E_y}{\partial Z} - \frac{\partial E_z}{\partial Y} - G_{mx} \cdot H_x \quad (3d)$$

$$0 = \frac{\partial E_z}{\partial X} - \frac{\partial E_x}{\partial Z} - G_{my} \cdot H_y \quad (3e)$$

$$0 = \frac{\partial E_x}{\partial Y} - \frac{\partial E_y}{\partial X} - G_{mz} \cdot H_z \quad (3f)$$

where:

$$\begin{aligned} G_{ex} &= (\sigma_{ex} \cdot Z_0 + j\epsilon_x \cdot k_0) \cdot \frac{v \cdot w}{u} \\ G_{ey} &= (\sigma_{ey} \cdot Z_0 + j\epsilon_y \cdot k_0) \cdot \frac{u \cdot w}{v} \\ G_{ez} &= (\sigma_{ez} \cdot Z_0 + j\epsilon_z \cdot k_0) \cdot \frac{u \cdot v}{w} \\ G_{mx} &= (\sigma_{mx} \cdot Z_0 + j\mu_x \cdot k_0) \cdot \frac{v \cdot w}{u} \\ G_{my} &= (\sigma_{my} \cdot Z_0 + j\mu_y \cdot k_0) \cdot \frac{u \cdot w}{v} \\ G_{mz} &= (\sigma_{mz} \cdot Z_0 + j\mu_z \cdot k_0) \cdot \frac{u \cdot v}{w} \end{aligned} \quad (4)$$

with k_0 denoting the wave propagation constant in free space.

A set of finite difference equations can be obtained from equ.(3) by using centered-differencing at point (i,j,k) . For example, for (3a), we have:

$$\begin{aligned} & \left[H_z \left(i, j + \frac{1}{2}, k \right) - H_z \left(i, j - \frac{1}{2}, k \right) \right] - \\ & \left[H_y \left(i, j, k + \frac{1}{2} \right) - H_y \left(i, j, k - \frac{1}{2} \right) \right] - G_{ex} \cdot E_x (i, j, k) = 0 \end{aligned} \quad (5)$$

The finite difference equations corresponding to (3b)~(3g), respectively, can be similarly constructed.

Then we replace the grid cell (Fig.1) with its equivalent transmission line network node with 12 branches (Fig.2), and transform the normalized field variables at the cell boundaries into the incident and reflected waves at the ports of the transmission lines. For example, for port one we have:

$$E_x \left(i, j - \frac{1}{2}, k \right) \mp H_z \left(i, j - \frac{1}{2}, k \right) = 2 \cdot V_1^{i,r} \quad (6)$$

where the upper and low signs, respectively, correspond to the incident waves V^i and reflected waves V^r on the right hand side of the equations. Equ.(6) establishes a direct correspondence between the mathematical model of the finite difference method and the physical model of the frequency-domain TLM method.

By substituting (6) into (5), it is readily shown that equ. (5) can be reduced to:

$$\begin{aligned} & V_{12}^r + V_1^i + V_9^r + V_2^r + G_{ex} \cdot E_x (i, j, k) \\ & - V_1^i - V_{12}^i - V_2^i - V_9^i = 0 \end{aligned} \quad (7)$$

The next step in the derivation is to express the field variables at the center (i,j,k) in terms of the incident voltages. This is accomplished by averaging the mixed electric and magnetic field components at point (i,j,k) along appropriate coordinate axes. The procedure is as follows. There are a total of twelve different mixed electric and magnetic field components, namely, $Ex\text{-}Hz$, $Ex\text{+}Hz$, $Ex\text{-}Hy$, $Ex\text{+}Hy$, $Ey\text{-}Hx$, $Ey\text{+}Hx$, $Ey\text{-}Hz$, $Ey\text{+}Hz$, $Ez\text{-}Hx$, $Ez\text{+}Hx$, $Ez\text{-}Hy$, and $Ez\text{+}Hy$. For each of them, we pick up its associated coordinate, which is the coordinate orthogonal to both the electric and magnetic field in the mixed field component. The mixed field component is then averaged at point (i,j,k) with respect to its associated coordinate. For example, for $(Ey\text{+}Hz)$, its associated coordinate is x (x -axis is orthogonal to both Ey and Hz). The centered average at point (i,j,k) for $(Ey\text{+}Hz)$ with respect to x is then calculated, and the resulting equation is as follows:

$$V_{11}^r + V_3^i - (E_y (i, j, k) + H_z (i, j, k)) = 0 \quad (8)$$

In a similar way, the equations for the other mixed field components can be obtained. By combining equs.(7) and

(8), one can easily find the expressions of the field components at the point (i,j,k) in terms of the incident voltages:

$$E_x(i, j, k) = \frac{2(V_1^i + V_2^i + V_9^i + V_{12}^i)}{(G_{ex} + 4)} \quad (9a)$$

$$E_y(i, j, k) = \frac{2(V_3^i + V_4^i + V_6^i + V_{11}^i)}{(G_{ey} + 4)} \quad (9b)$$

$$E_z(i, j, k) = \frac{2(V_5^i + V_6^i + V_7^i + V_{10}^i)}{(G_{ez} + 4)} \quad (9c)$$

$$H_x(i, j, k) = \frac{2(-V_4^i + V_5^i - V_7^i + V_8^i)}{(G_{mx} + 4)} \quad (9d)$$

$$H_y(i, j, k) = \frac{2(V_2^i - V_6^i - V_9^i + V_{10}^i)}{(G_{my} + 4)} \quad (9e)$$

$$H_z(i, j, k) = \frac{2(-V_1^i + V_3^i - V_{11}^i + V_{12}^i)}{(G_{mz} + 4)} \quad (9f)$$

Equ.(9) is derived directly from Maxwell's equations using centered differencing and averaging. The scattering matrix is then obtained by simply substituting equ.(9) into equ.(8). The 12X12 scattering matrix is shown in Fig.3. The matrix elements are given as follows:

$$\begin{aligned} a &= -\frac{G_{e\alpha}}{2(4+G_{e\alpha})} + \frac{G_{m\beta}}{2(4+G_{m\beta})} \\ b &= \frac{2}{4+G_{e\alpha}} \\ c &= -\frac{G_{e\alpha}}{2(4+G_{e\alpha})} - \frac{G_{m\beta}}{2(4+G_{m\beta})} \\ d &= \frac{2}{4+G_{m\beta}} \end{aligned} \quad (10)$$

where subscripts α and β depend on where the element is located in the matrix, as illustrated in Fig.3. For example, for S29, which is given by c, subscripts for Ge and Gm are then x and y, respectively. So we have:

$$S_{29} = c = -\frac{G_{ex}}{2(4+G_{ex})} - \frac{G_{my}}{2(4+G_{my})}$$

5. Discussions and Conclusions

Historically, the TLM method, which is based on Huygen's principle, and the finite difference method, which is based on Maxwell's equations, are distinguished as two different methods, assuming Huygen's principle and Max-

well's equations represent two distinct modelling philosophies. However, this assumption is not justified since both Huygen's principle and Maxwell's equations describe the same phenomenon in nature despite the use of different 'languages'. Indeed, they are fully equivalent. We have demonstrated [8] that the time-domain TLM (TD TLM) method is a unique time-domain finite difference scheme and can be directly derived from Maxwell's equation using centered differencing and averaging. In this paper, we demonstrated that we can draw the same conclusion for the frequency-domain TLM (FD TLM) method. Therefore, the TLM method, both in time- and frequency-domain, can be considered as either a physical model of the transmission line network (Huygen's principle) or a mathematical model of the finite difference method (Maxwell's equations), depending on which concept one feels more comfortable with.

Based on the derivation presented in this paper, one can easily assess the accuracy of the FD TLM method. The errors introduced during the derivation of the field expressions (11) and the node scattering matrix (Fig.3) are only associated with the centered differencing (Equs.(7)) and averaging (Equs.(8)). Both of them have 2nd-order accuracy. It should be mentioned that the 2nd-order accuracy of the FD TLM method is still preserved in the case of a graded mesh. This is because the errors introduced during the derivation are solely depended on the properties of the node and errors for different nodes are independent of one another. The error for one node does not change when its surrounding environment is changed.

References:

- [1] Hang Jin and Ruediger Vahldieck, "A frequency domain TLM method," 1992 IEEE Int. Microwave Symp. Dig., Albuquerque, June 1-5, pp.775-778,
- [2] Hang Jin and Ruediger Vahldieck, "Calculation of frequency-dependent S-parameter of CPW air-bridges considering finite metallization thickness and conductivity," 1992 IEEE Int. Microwave Symp. Dig., Albuquerque, June 1-5, pp.207-210
- [3] Hang Jin and Ruediger Vahldieck, "The frequency-domain transmission line matrix method - A new concept," IEEE Trans. Microwave Theory Tech., vol.40, pp.2207-2218, Dec. 1992

[4] Hang Jin, Ruediger Vahldieck, Peter Russer and Jifu Huang, "Full-wave analysis of discontinuities in uniplanar and multiplanar transmission lines using the frequency-domain TLM method," 1993 IEEE Int. Microwave Symp. Dig., Atlanta, June 14-18, pp.713-716

[5] Hang Jin, Ruediger Vahldieck, Jifu Huang, and Peter Russer, "Rigorous Analysis of Mixed Transmission Line Interconnects Using the Frequency-Domain TLM Method," IEEE Trans. Microwave Theory Tech., vol.41, pp.2248-2255, Dec. 1993

[6] Jifu Huang, Ruediger Vahldieck and Hang Jin, "Fast frequency-domain TLM analysis of 3D circuit discontinuity," 9th Annual Review of Progress in Applied Computational Electromagnetics Symposium, Monterey, CA, March 22-26, 1993

[7] D.P.Johns, A.J.Wlodarczyk, A.Mallik, and C.Christopoulos, "New TLM Technique for steady-state field solutions in three dimensions," Electron. Lett., Vol.28, no.18, pp.1692-1694, Aug., 1992

[8] Hang Jin, Ruediger Vahldieck and Jifu Huang, "Direct derivation of the TLM symmetrical condensed node from Maxwell's equations using centered differencing and averaging," 1994 IEEE Int. Microwave Symp. Dig., San Diego, pp23-26

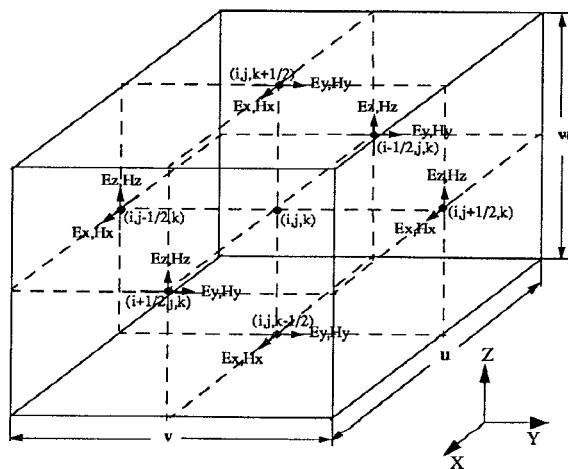


Fig.1 A unit cell and field sampling points

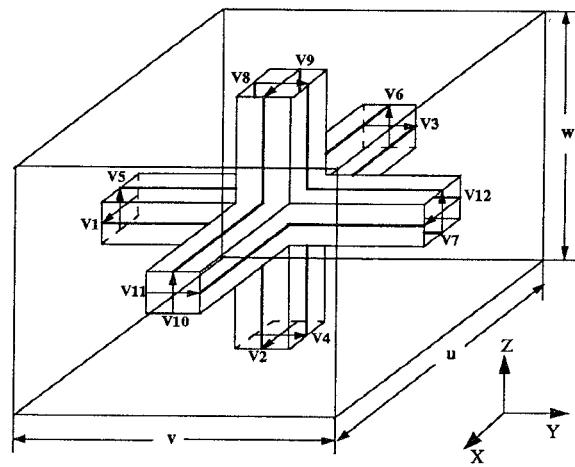


Fig.2 The equivalent FD-TLM symmetrical condensed node

Column No.	1	2	3	4	5	6	7	8	9	10	11	12
Subs. α for G_e	x	x	y	y	z	z	z	y	x	z	y	x
Subs. β for G_m	z	y	z	x	x	y	x	x	y	y	z	z
1	a	b	d						b	-d	c	
2	b	a				d			c	-d	b	
3	d	a	b				b		c	-d		
4		b	a	d			-d	c		b		
5			d	a	b	c	-d	b				
6		d		b	a	b		-d	c			
7			-d	c	b	a	d		b			
8		b	c	-d		d	a		b			
9	b	c		-d			a	d	b			
10		-d		b	c	b		d	a			
11	-d	c	b			b		a	d			
12	c	b	-d				b		d	a		

Fig.3 The symmetrical scattering matrix of the FD-TLM symmetrical condensed node