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Abstract --- This paper presents a new frequency-domain

TIM symmetrical condensed node derived directly from

Maxwell’s equations by using centered differencing and

averaging. Direct correspondence between the FDTLM

and finite difference method is established. The node scat-

tering matrices and field expressions are given for the

general case withgradedmeshandanisotropicmaterials

includingboth electricand magneticlosses.It is demon-

stratedthatthisnew FDTLM node alwayshas2nd-order

accuracyregardlessof a uniformor graded mesh discreti-

zation of the space.

1. Introduction

“rhe frequency-domain TLM (FDTLM) method is a

new numerical technique for solving 3-D electromagnetic

field problems. Since its concept was first introduced by

Jin and Vahldieck in 1992[1]-[3], the FDTLM method

has been successfully applied to analyze a variety of 3-D

electromagnetic structures[l]-[7]. The basic idea of the

FDTLM is to model the original electromagnetic structure

with an equivalent electric network by filling the space to

be analyzed with a t.mnsmission line matrix, or node array.

Electric and magnetic fields in the original electromag-

netic problem are represented by voltages and currents in

the network which are then treated with numerous stan-

dard network techniques. Using different nodes for differ-

ent media, the FDTLM method can be applied to virtually

any structure with complex geometry.

The nodes used in the FDTLM method were orig-

inally derived from the time-domain TLM (TDTLM)

nodes [1]-[5]. However, it has also been shown that the

FDTLM nodes can be derived directly in the frequency

domain by establishing a relationship between the imped-

ances and propagation constants of the main lines of the

node and the properties of the medium to be modelled

[6][7]. In this paper, we will demonstrate that the FDTLM

node can be derived directly from Maxwell’s equations

without resorting to any circuit concept. A new symmet-

ric FDTLM node is derived from Maxwell’s equations

using centered differencing and averaging. The scattering
m :

matrix of this new node is given for the generat case with

a graded mesh and anisotropic materials including both

electric and magnetic losses. The accuracy of the TLM

algorithm is also discussed.

2. Theory

In the rectangular coordinate system, Maxwell’s

equations in the frequency-domain can be written as:

ah ah
jf.O&o&y. ey = az ax—z-—z-oe

eY Y

(la)

(lb)

(lC)

(id)

(le)

(M)

where cois the frequency; &and w are the permittivity and

permeability; cre and am are the equivalent electric and

magnetic conductivities, respectively.

The grid points in the discretized space are denoted

by indices (i,j,k), respectively, in the x, y, z directions

(Fig.1). Any function of space at space point (i,j,k) is

expressed as F (i, j, k) . The cell sizes are denoted by w Y,

w, respectively, along the x, y, z directions.
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Equ.(1) can be simplified by using the following

transformation:

X=u .x; y=v. y, .Z=W. Z

ez = Ex/u; ey = Ey/v; ez = 12z/w (2)

hx = Hx/u.zo; hy = Hy/vzo; h, = Hz/wZo

where Z. is the characteristic impedance of free space.

Equ.(1) is then rewritten as:

O=a~-a$-Gex. Ex

i)H 3H
—’-—z-Gey. Ey

‘=az ax

O=a&.!&G .E
ez ~

() =a~-a~-G H
mx x

aEz aEx

‘= Z-%- G”Y” HY

aEx aE
-—y-Gmz. H

“W ax z

(3a)

(3b)

(3C)

(3d)

(3e)

(3f)

whercx

Gez = (~.. oZ. +jEx. ko) . ‘~

GeY = (oeY. Z. +j&Y. Q . ~w
v

Gez = (oez. Zo+j&z. ko) . ~

(4)
G mx = (o#ZO +jp., oko) . ‘&w

Gmy = (Omy/zo +jVy” Q “~

G~z = (Omz/Zo + jpz . ko) . ~

with ~ denoting the wave propagation constant in free

space.

A set of finite difference equations can be obtained

from equ,(3) by using centered-differencing at point

(ijJc). For example, for (3a), we have:

[H,(i,j+~k)-Hz(i,j-~,k)]-

[HY(i~~+~)-Hy(i,j, k-~)]-GezEx(i,j,k) = o ‘5)

The finite difference equations corresponding to

(3b)-(3g), respectively, can be similarly constructed.

Then we replace the grid cell (Fig.1) with its equiva-

lent transmission line network node with 12 branches

(Fig.2), and transform the normalized field variables at

the cell boundaries into the incident and reflected waves

at the ports of the transmission lines. For example, for

port one we have

E.(ij-:k)~Hz(i$J-ik) = 2<’ (6)

where the upper and low signs, respectively, correspond

to the incident waves fl’ and reflected waves f on the

right hand side of the equations. Equ.(6) establishes a

direct correspondence between the mathematical model

of the finite difference method and the physical model of

the frequency-domain TLM method.

By substituting (6) into (5), it is readily shown that

equ. (5) can be reduced to:

V~2+fi+~+V~ +G=x. Ez(i,j, k)

-V#@2.f19 = o
(7)

The next step in the derivation is to express the field

variables at the center (i,jJc) in terms of the incident volt-

ages. This is accomplished by averaging the mixed elec-

tric and magnetic field components at point (iJJc) along

appropriate coordinate axes. The procedure is as follows.

There are a total of twelve different mixed electric and

magnetic field components, namely, Ex-Hz, Ex+Hz,

Ex-Hy, Ex+Hy, Ey-Hx, Ey+Hx, Ey-Hz, Ey+Hz, Ez-Hx,

Ez+Hx, Ez-Hy, and Ez+Hy. For each of them, we pickup

its associated coordinate, which is the coordinate orthog-

onal to both the electric and magnetic field in the mixed

field component. The mixed field component is then aver-

aged at point (iJJc) with respect to its associated coordi-

nate. For example, for (Ey+Hz), its associated coordinate

is x (x-axis is orthogonal to both Ey and Hz). The cen-

tered average at point (ijJc) for (Ey+Hz) with respect to x

is then calculated, and the resulting equation is as fol-

lows:

V;l +~3– (Ey(i,j, k) +Hz(i, j,k)) = O (8)

In a similar way, the equations for the other mixed field

components can be obtained. By combining equs.(7) and
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(8), one can easily find the expressions of the field compo-

nents at the point (i,j,k) in terms of the incident voltages:

. (i,j,~) . ‘~

~(ijk).&
Y

>>
(GeY + 4)

.

2(t75+176+#7+lt10
Ez(i, j, k) = )

(G=z+4)

. (i,j,~) . ‘~
x (Gmx + 4)

. (i,j’,k) . ‘~

~(i,j,k) . ‘&
z (Gmz + 4)

(9a)

(9b)

(9C)

(9d)

(9e)

(9f)

Equ.(9) is derived directly from Maxwell’s equations

using centered differencing and averaging. The scattering

matrix is then obtained by simply substituting equ.(9) into

cqu.(8). The 12X12 scattering matrix is shown in Fig.3.

The matrix elements are given as follows:

G G

a = – 2(4 +e;ea) + 2(4 +m:mp)

b=~
4 + Gea

G G
(lo)

M
c = - 2(4 +’;ea) - 2(4+ Gmp)

4+G
@

where subscripts a and ~ depend on where the element is

located in the matrix, as illustrated in Fig.3. For example,

for S29, which is given by c, subscripts for Ge and Gm are

then x and y, respectively. So we have

G G
s29=c=–

2(4 +’:ex) – 2 (4 +m:my)

5. Discussions and Conclusions

Historically, the TLM method, which is based on Huy-

gen’s principle, and the finite difference method. which is

based on Maxwell’s equations, are distinguished as two

different methods, assuming Huygen’s principle and Max-

well’s equations represent two distinct modelling philos-

ophies. However, this assumption is not justified since

both Huygen’s principle and Maxwell’s equations

describe the same phenomenon in nature despite the use

of different ‘languages’. Indeed, they are fully equiva-

lent. We have demonstrated [8] that the time-domain

TLM (TDTLM) method is a unique time-domain finite

difference scheme and can be directly derived from Max-

well’s equation using centered differencing and averag-

ing. In this paper, we demonstrated that we can draw the

same conclusion for the frequent y-domain TLM

(FDTLM) method. Therefore, the TLM method, both in

time- and frequency-domain, can be considered as either

a physical model of the transmission line network (Huy-

gen’s principle) or a mathematical model of the finite dif-

ference method (Maxwell’s equations), depending on

which concept one feels more comfortable with.

Based on the derivation presented in this paper, one

can easily assess the accuracy of the FDTLM method.

The errors introduced during the derivation of the field

expressions (11) and the node scattering matrix (Fig.3)

are only associated with the centered differencing

(Equs.(7)) and averaging (Equs.(8)). Both of them have

2nd-order accuracy. It should be mentioned that the

2nd-order accuracy of the FDTLM method is still pre-

served in the case of a graded mesh. This is because the

errors introduced during the derivation are solely

depended on the properties of the node and errors for dif-

ferent nodes are independent of one another. The error

for one node does not change when its surrounding envi-

ronment is changed.
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Fig. 1 A unit cell and field sampling points
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Fig.2 The equivalent FDTLM symmetrical
condensed node

Column No. 123456789101112
Subs. afor Gexxyyzzz yxzyx

Subs. (3for Gmzyzxxyx xyyzz

1 abd b -d C

2 ba d c -d b
3 dab b c -d
4 bad -d C b
5 da bc-db
6 d bab -d C

7 -dcbadb
8 bc-dda b
9 bc -d ad b
10 -d bcbda
11 -dcb b ad
12 cb-d b da

Fig.3 The symmetrical scattering matrix of the
FDTLM symmetrical condensed node
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